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Symmetric and antisymmetric periodic disturbances introduced directly into the 
boundary layer on a circular cylinder at low Reynolds number are shown by 
experiment to be capable of modifying the vortex formation process and changing 
the vortex shedding frequency. Spectral measurements have shown that the 
antisymmetric vortex shedding mode is strongly coupled to the symmetric first 
harmonic mode. When symmetric excitation is applied, three different shapes of the 
mean velocity profiles can be identified as the forcing amplitude is increased. At low 
forcing amplitudes nonlinear interaction between the forcing field and the natural 
wake oscillator produces sum and difference modes. Symmetric forcing with 
intermediate-amplitude disturbances suppresses the natural shedding frequency, 
and the dominant vortex shedding energy appears as a sinuous mode at half the 
excitation frequency. At  high symmetric forcing amplitudes a threshold is reached, 
above which the large-scale vortices do not form. The symmetries of the combination 
modes follow two simple rules based on the symmetries of the interacting modes. The 
symmetry rules provide an explanation for the fundamental difference in wake 
structure that occurs between symmetric forcing and antisymmetric forcing. 

1. Introduction 
Substantial progress has been made over the last five years toward understanding 

the instability mechanism that determines the vortex shedding frequency in the 
wake of bluff bodies. Koch (1985), Monkewitz & Nguyen (1987), Triantafyllou, 
Triantafyllou & Chryssostomidis (1986), and Hanneman & Oertel (1989) have used 
the concepts of linear stability theory to prove the existence of local absolute 
instability in the near-wake region at  supercritical Reynolds numbers. Chomaz, 
Huerre & Redekopp (1988) using the Ginzburg-Landau model have shown that 
absolute instability is a necessary but not a sufficient condition for self-sustained 
oscillations. A sufficiently large region of absolute instability is required for the 
global instability that leads to the self-sustained oscillations. Monkewitz (1988) has 
shown that the stability characteristics of wakes follow the prediction of Chomaz 
et al. Experiments by Provensal, Mathis & Boyer (1987) and Sreenivasan, Strykowski 
& Olinger (1987) have demonstrated that vortex shedding near the critical Reynolds 
number is the result of a temporal global instability. Thus, the initiation of the wake 
oscillations is reasonably well understood. 

As the instability grows to k i t e  amplitudes, nonlinear effects become important. 
The first harmonic of the vortex shedding frequency appears in the wake, and a 
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saturation amplitude or limit-cycle state is reached. At this stage the near wake 
produces fully formed KLrmtin vortices. Morkovin (1964) and Gerrard (1978) have 
given descriptions of a large variety of wake phenomena that occur as the Reynolds 
number is changed. Hanneman & Oertel (1989) have used numerical simulation to 
study the evolution from the linear stages to the nonlinear self-excited stage of 
vortex development in the wake of a bluff body. 

The initial disturbances for the self-sustained oscillations in the nonlinear saturated 
state are provided by the vorticity dynamics in the wake. The self-excitation cycle 
(resonance) consists of the modulation of the boundary layer by initial disturbances 
on the body, followed by spatial amplification of the disturbances in the separated 
shear layers, leading to the fully formed vortices which produce the feedback signal 
to the body. The feedback signal has been observed in the experiments by Nishioka 
& Sat0 (1978) and Unal & Rockwell (1987a). Their measurements have shown the 
velocity fluctuation level in the vicinity of the body surface to be relatively large, i.e. 
about 3% of the free-stream velocity a t  Reynolds number of 150. If a splitter plate 
is used to suppress the vortex formation, then the initial disturbances on the body 
are decreased to background levels (Unal & Rockwell 1987 b) .  It is not clear, however, 
if the upstream influence occurs by the induced velocity field of the vortices 
(Biot-Savart induction) or by upstream-travelling vorticity waves resulting from the 
initial global instability. Rockwell (1990) refers to the latter mechanism as type-I 
global instability and the former as type-I1 global instability. 

In  either case, the essential elements of the unforced near-wake resonance can be 
summarized as : (i) upstream influence providing initial spatio-temporal disturbances 
to the shear layers on the body, i.e. a feedback signal ; (ii) cross-flow communication 
between the two separated shear layers ; (iii) spatial amplification of the disturbances 
in the separated shear layers to a saturation level which provides the feedback signal. 

Since the wake structure is determined by the resonance mechanism, and the 
steady and unsteady forces acting on the body are determined to a large extent by 
the wake structure, it follows that the forces can be controlled by modifying the 
mechanism of the self-excitation process. One example is the splitter plate, which 
breaks the resonance in the wake by preventing cross-flow communication and 
changing the boundary condition on the wake centreline (see Unal & Rockwell 
1987 b) .  As a result the Karman vortex street does not form, and there is a significant 
reduction in the drag on the body. 

Other examples of wake control include base bleed (Bearman 1967 ; Wood 1964, 
1967), oscillating the cylinder (Koopman 1967 ; Berger 1967 ; Wehrmann 1967 ; 
Griffin & Ramberg 1976; Bearman 1984 ; Olinger & Sreenivasan 1988) and excitation 
with sound (Blevins 1985 ; Detemple-Laake & Eckelmann 1989; Ffowcs Williams & 
Zhao 1988). These are global types of forcing, since a large region of the flow is 
disturbed. In  these experiments a change in the large-scale wake structure has been 
observed, but the reasons for the change are not clear. It is difficult to determine 
exactly how the forcing field interacts with the near-wake resonance mechanism, 
because the forcing affects a large area of the flow. With sound wave excitation, for 
example, there is modulation of the attached boundary layer, the separating shear 
layers, as well as the wake. By introducing disturbances at specific, well-defined 
locations, one can obtain a better understanding of the wake oscillation mechanism. 

The purpose of the present set of experiments is to investigate the possibility of 
using local forcing to interact directly with the feedback signal on the surface of the 
body. In  particular, we wish to determine if nonlinear interaction can occur between 
the localized forcing field and the feedback signal from the wake. Assuming that such 
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an interaction does take place, then the effect of the local forcing on the large-scale 
vortex formation process will be examined. New insight into the physics of self- 
sustained oscillations can be gained by comparing the wake in its forced state with 
the unforced free oscillations. Our experiment investigates these issues by using the 
unsteady bleed technique to introduce disturbances into the boundary layer at  f 45" 
from the forward stagnation line. 

The following section describes the unsteady bleed forcing technique, and the 
experimental methods used to acquire and process the data. The results presented in 
9 3 describe the effects of symmetric and antisymmetric excitation. The interpretation 
of the results is discussed in $4. Section 5 presents the conclusions. 

2. Experimental method 
The experiments were conducted on a small recirculating water channel with a test 

section 20.3 cm wide, 30.5 cm high and 244 cm in length. The typical operating 
speed, U,,, was 4.5 cm/s, which gave a Reynolds number based on the cylinder 
diameter of 470. The free-stream turbulence level was measured with a hot-film 
probe to be 0.22 % of the free-stream velocity. The mean flow in the central 10 ern 
width of the channel was constant to within 0.5% of U,. 

The water channel was covered to reduce surface waves, and a slot was milled in 
the top through which the cylinder was positioned. Rather than move the optics of 
the laser anemometer, the cylinder was moved in the water channel to obtain 
measurements at different streamwise locations. The origin of the coordinate system 
was defined as the centre of the cylinder. The x-axis and u-velocity component were 
in the streamwise direction, the y-axis was perpendicular to the flow direction and 
the cylinder axis. The z-axis was coincident with the axis of the cylinder. 

The cylinder was constructed from a hollow piece of Lexan plastic with an outer 
diameter D = 0.954 em and an inner diameter of 0.635 cm. The outer diameter was 
uniform to 0.28 % of D.  Circular end plates were placed 18 cm apart on the cylinder 
to promote parallel vortex shedding. The aspect ratio L / D  for the cylinder between 
the end plates was 18.9. Since the blockage in the channel was only 4.7%, no 
correction was applied to the data. 

Two rows of small holes (d ,  = 0.074 cm) were drilled along the axis of the cylinder 
at  0 = f45', where 0 is the angle measured from the forward stagnation line as 
shown in figure 1. There were 131 holes per row. A Plexiglas dividing wall was 
cemented inside the cylinder between the two rows of holes to form two separate 
chambers. The internal chambers of the cylinder were connected with Tygon tubing 
to a dual piston-cylinder forcing mechanism shown schematically in figure 1. With 
this system the two rows of holes could be forced either in-phase (symmetric forcing) 
or 180" out of phase (antisymmetric forcing). The diameter and spacing of the holes 
were small enough that the effective disturbance was two-dimensional over the 
length of the cylinder. 

The forcing system was completely closed except for the bleed holes on the surface 
of the cylinder. During the outflow phase a small amount of water was ejected from 
the holes, and the same volume of water was drawn back into the cylinder during the 
inflow phase. By continuity, there is zero net mass addition to the flow on average 
over the forcing cycle. However, owing to the nonlinear streaming effect there is 
momentum addition to the flow. The streaming effect can be significant enough at 
high forcing levels to change the base flow state, as shown by Williams & Amato 
( 1989). 
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FIGURE 1.  Schematic of the cylinder and unsteady bleed system. 

The measure of excitation amplitude used in this experiment is the bleed 
coefficient, C,, which is defined as ( u i 2 d j ) / ( q D ) ,  where u; is the r.m.s. velocity of the 
flow a t  the exit of the unsteady bleed jet. The bleed coefficient represents the 
momentum induced by the unsteady bleed jets relative to the momentum in the 
undisturbed free stream. The value of us was determined from the forcing frequency, 
f,, and the amplitude of the displacement of the air-water interface in the tubing 
leading to the cylinder model. 

The hydrogen bubble technique was used for flow visualization. The bubbles were 
generated with a 0.025 mm diameter platinum wire, which was soldered to a copper 
frame. A 450mA current at 3 0 V  was used to  ionize the water and produce the 
hydrogen bubbles. 

Quantitative measurements of the streamwise velocity component, u, were 
obtained with the scanning laser anemometer (SLA) shown schematically in figure 2. 
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FIGURE 2. Schematic of the scanning laser anemometer system. BC, bragg cell; L1, L2, beam 
focusing lenses; BS, beam splitter and prism; M1, M2, mirrors ; SM1, vertical optical scanner; SM2, 
SM3, horizontal optical scanner ; MS 1, mask ; RL1, RL2, cylindrical lenses ; PM, photomultiplier 
tube. 

FIGURE 3. Twelve seconds of linearly interpolated SIA data prior to spectral processing obtained at 
xlD = 4.0 are shown. The speed of the flow is indicated by the grey level. 

Details of the system may be found in Williams & Economou (1987). The SLA system 
is a typical forward-scatter laser anemometer, whose beam crossing location is 
controlled by electro-mechanical scanners. The position of the measurement volume 
was determined with the feedback signal from the scanners to within 0.5 mm over a 
10 cm scan length. The scan rates were varied from 10 to 40 scans/s depending on the 
type of measurement. Frequency shifting at  50 kHz was used. The flow was seeded 
with 2.0 pm polystyrene spheres. Data rates on the counter processor were as high 
as 6000 valid measurements per second, but were varied depending on the type of 
measurement being made. 

With the SLA one obtains quasi-instantaneous velocity profiles as a function of 
time. An interpolation routine was used to convert the randomly spaced raw data 
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into 128 evenly spaced bins along each scan across the flow. One of the interpolated 
data sets is shown in figure 3, where the grey level represents the magnitude of the 
velocity. Each bin represents a different y-location. Any desired y-location (or a 
separate external signal) can be used as a reference signal for the cross-spectra 
calculations. The autospectra and cross-spectra have been computed for each y- 
location with a frequency resolution of 0.019 Hz. Typically 15 ensemble averages of 
512 points per ensemble-bin have been used to compute the spectral estimates. The 
low number of ensembles is due to storage limitations on the data acquisition 
computer. The end result of the post processing is a data set with high spatio- 
temporal resolution of the mean, r.m.s., amplitude, phase and coherence distributions 
across the wake. 

3. Results 
A preliminary set of experiments was conducted with the unsteady bleed holes 

located a t  & 135" from the forward stagnation line. The idea was to excite the shear 
layers shortly after separation with symmetric disturbances. Surprisingly, there was 
almost no detectable influence on the wake structure until very large forcing 
amplitudes were reached. Distortion of the mean flow by the streaming effect was 
clearly seen in the flow visualization a t  high forcing levels. It was concluded that the 
separated shear layers were not receptive to this type of excitation, and no further 
studies were conducted. 

Introducing disturbances into the boundary layer before separation had a much 
larger effect on the wake development. In  the next two sections the effect of forcing 
symmetrically (rows of jets in phase) at 0 = f 45' and antisymmetrically (rows of jets 
180" out of phase) are discussed. 

3.1. Symmetric forcing ~ time-averaged Jlow behaviour 
The flow visualization photographs in figure 4 show the wake in four different states : 
(a) the natural wake (C,  = 0) ,  ( b )  the wake a t  a low-amplitude excitation (C, = 0.026), 
(c) intermediate excitation (C,  = 0.095), and ( d )  high excitation amplitude (G, = 
0.22). All cases are a t  a fixed excitation frequency f, = 1.8f0, where f,, is the natural 
KBrman shedding frequency. A dramatic change in the wake structure takes place 
as the forcing amplitude is increased. At low amplitudes the centres of the vortices in 
figure 4 (b )  move closer to the wake centreline, but the structure is essentially the same 
as the natural case. In figure 4 ( c )  the increase in forcing amplitude to an intermediate 
level causes a rearrangement of the vortices. The vortex formation occurs much 
closer to the cylinder body, and the wake can be seen to spread at a much faster rate 
than the undisturbed natural wake. Comparing figure 4(c) with figure 4 ( a ) ,  one 
observes that the centres of the vortices cross the centreline of the wake, in contrast 
to the unforced case, where the vorticity shed from one side of the body remains on 
the same side. Similar patterns in the vorticity field were observed by Detemple- 
Laake & Eckelmann (1989) (their 'seahorse' pattern) and Williamson & Roshko 
(1988). 

There is clearly a sinuous structure to the pattern of vortices seen in figure 4(a-c) ,  
however, when the forcing amplitude is increased above the threshold level, C,*, then 
the staggered vortex pattern is replaced by a parallel shedding arrangement as 
shown in figure 4 ( d ) .  We refer to this as the 'over-forced ' state. There is a large region 
of quiescent fluid extending about 5-6 diameters behind the body, and the spreading 
rate of the wake is dramatically reduced. Farther downstream at approximately 
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FIGURE 4. Hydrogen bubble flow visualization showing the natural wake and symmetric forcing 
case, fJf, = 1.8: (a) natural wake; ( b )  low-amplitude forcing, C, = 0.026; (c) intermediate 
amplitude, C, = 0.095; (d )  high amplitude, C, = 0.22. 
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FIQURE 5. Mean and r.m.s. velocity profiles at x / D  = 4.0 corresponding to the flow visualization 
cases shown in figure 4: (a) natural wake; ( b )  low-amplitude symmetric forcing, C,, = 0.026; (c) 
C, = 0.095; ( d )  C, = 0.22. The solid line is the mean profile and the dashed line is the r.m.s. profile. 

x/D = 6, the wake develops a new sinuous mode of oscillation that appears to be 
somewhat weaker than the oscillations seen in figure ~ ( u - c ) .  

The mean velocity profile U(y) and root-mean-square (r.m.5.) velocity fluctuation 
distribution, u ' ( y ) ,  at x / D  = 4 are plotted in figure 5 ( u 4 )  corresponding to the 
previous flow visualization. With low-amplitude forcing the centreline velocity 
defect, (Uo- UcJ/Uo,  in the mean wake decreases from 0.37 to 0.25 as shown in figure 
5 ( b ) .  We refer to the mean profiles in figure 5 (a, b )  having a V-shape. The peak in the 
uf r.m.s. amplitude decreases from 0.15U0 in the natural wake to O.lOU,,, which 
reflects a decrease in vortex strength. Although it has not been shown, the mean 
velocity defect and uf r.m.s. levels increase when very low forcing amplitudes are 
used. The low-level forcing produces stronger and more coherent vortices in the near- 
wake region. However, this phenomenon is frequency dependent, and has not yet 
been thoroughly investigated. 

When the forcing amplitude is increased to C, = 0.095, the mean velocity profile 
develops into a W-shape as shown in figure 5(c). The peak in the uf r.m.5. amplitude 
increases to about 0.25U0. The W-shaped mean velocity profilers are found at this 
particular forcing frequency, when forcing amplitudes are between 0.05 < C, < 0.12. 

A simple explanation for the local maximum in the mean velocity profile at  y = 
0 can be found by examination of hydrogen bubble photographs. As mentioned 
earlier, when the Karmin vortex street forms in the unforced case, the vortices 
remain on the same side of the wake in which they are shed from the body. The 
induced velocity at y = 0 from this arrangement of vortices is in the upstream 
direction, which contributes to the centreline velocity defect and produces a V- 
shaped profile. However, when the centres of the vortices cross the wake centreline, 
the induced velocity is in the downstream direction. For example, vorticity shed 
from the right side of the body ends up on the left side of the wake. Consequently, 
the induced velocity from a fully formed vortex at y = 0 is in the downstream 
direction, which produces the local maximum of the W-shaped profile. 
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FIQURE 6. Mean velocity profiles plotted against forcing amplitude to show threshold behaviour 
with fJf, = 1.9 at Re = 370 and x /D  = 5. 

Increasing the forcing amplitude to the over-forced flow regime causes the velocity 
profile to become U-shaped. The peak in the u’ r.m.9. decreases to about 0.16U0 as 
a result of the breakdown in the resonance mechanism. The centreline velocity goes 
to zero, indicating that the fluid in the central portion of the wake is motionless. No 
significant recirculation of fluid is found in this region. In  fact, hydrogen bubbles 
tend to float straight upward. From flow visualization studies, it appears that the 
two shear layers develop independently for about 6 diameters downstream of the 
cylinder. At this point they begin to interact and a new sinuous type of instability 
develops. 

A set of mean velocity profiles obtained by Amato (1989) at z / D  = 5 and Reynolds 
number 370 have been superposed in figure 6 to illustrate the threshold character of 
the over-forced flow regime. Starting with the unforced wake, the V-shaped mean 
velocity profiles gradually evolve into a W-shaped profile as the forcing amplitude is 
increased. Above the threshold excitation level, C,*, there is a sudden change to the 
U-shaped profile. No further changes occur when the forcing amplitude is increased. 
The threshold type of behaviour is unique to the symmetric forcing. When 
antisymmetric disturbances are used the centreline velocity defect increases, but the 
sudden change to a U-shaped profile is not seen. 

The three regimes of mean profile structure are sensitive to both the forcing 
frequency and amplitude. A map of the mean velocity profile shapes as a function of 
forcing frequency and amplitude is shown in figure 7 for symmetric forcing. The 
envelope of the forcing conditions that could be achieved in this experiment has been 
outlined by the thick solid line. The shading indicates the region between 1.0 < 
fe/fo < 2.0 where W-shaped profiles are found. The top of the shaded region 
corresponds to G,*. The value of C,* decreases monotonically as the forcing frequency 
increases. The W-shaped profiles did not form, when fe/fo > 2. At the high forcing 
frequencies, the mean profiles change directly from a V-shape to a U-shape as the 
forcing amplitude exceeds C,*. 
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FIQURE 7. Parameter map of the mean flow showing regions of V-, W- and U-shaped velocity 
profiles at x /D  = 4.0. 

3.2. Symmetric forcing - unsteady flow behaviour 
The effects of different forcing frequencies on the wake structure are best viewed 
through the spectra, amplitude and phase distributions of the various modes. All the 
data presented in this section were obtained at x / D  = 4.0 and Re = 470. For 
comparison, the spectra of the natural wake are presented in figure 8(a)  for y- 
locations corresponding to the peak in the r.m.s. ( y / D  = 1.0) and figure 8 ( b )  on the 
wake centreline (y/D = 0). The vortex shedding frequency, fo, is the strongest peak 
in the shear-layer spectrum atfo = 1.07 Hz. A smaller peak corresponding to the fist 
harmonic fl = 2.14 Hz appears in the centreline spectrum. These were the only 
significant peaks found in the natural wake spectrum. 

Marasli, Champagne & Wygnanski (1989) recognized that the disturbances in the 
wake could be decomposed into even and odd function of y representing the varicose 
and sinuous modes. We have used this technique to get a better description of the 
wake structure by computing the ratio of the energy in the even (varicose) and odd 
(sinuous) components of each mode. In Marasli et aZ.’s technique the real and 
imaginary components of the eigenfunction at a particular frequency are decomposed 
into even and odd functions of y about the wake centreline. The real and imaginary 
components of the odd functions are then recombined to form the amplitude, u,,(y), 
and phase distributions for the odd mode. The same process is repeated for the even 
functions, to get the amplitude, ueven(y), and phase distributions for the even mode. 
We carry the technique one step further by computing the energy of the odd and 
even functions from the square of the amplitude distribution, and integrating across 
the wake. Two integral quantities have been defined, 

= Lh uodd(Y)2 d!/, = ueven(Y)2 dy, l h  
where + h  are the limits to the scan in the y-direction. The relative energy in the 
antisymmetric component of the mode compared to the energy in the symmetric 
component is expressed by the ratio OIE. When O / E  > 1 the sinuous (antisymmetric) 
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FIGURE 8. Natural wake spectra at x / D  = 4.0: (a) y/D = 1.0, peak in r.m.8.; 
(b)  centreline, y/D = 0. 

component of the mode is dominant, and when O / E  < 1 the varicose (symmetric) 
component is dominant. 

An example of the modal decomposition of the fundamental and its harmonic is 
shown in figure 9(a, b)  for the natural wake. In these figures the solid line is the 
combined mode shape obtained from the spectral analysis. the long-dashed line 
shows the odd component of the mode, and the short-dashed line is the even 
component. In figure 9(a) the vortex shedding mode fo = 1.07 Hz has OIE = 4.9, so 
it is antisymmetric. One can easily see in the figure that the majority of the energy 
at this frequency is contained in the antisymmetric mode. The fist harmonic at 
fi = 2.14 Hz shown in figure 9 ( b )  is symmetric, because O / E  = 0.23. These results 
support Morkovin’s (1987) observation that the symmetry of the disturbance field in 
an idealized (parallel and infinite) Karman vortex street is equivalent to the 
superposition of a sinuous (odd) velocity mode with a varicose (even) velocity mode 
at twice the vortex shedding frequency. 

When low-amplitude symmetric disturbances are introduced into the boundary 
layer on the cylinder, there is a progressive shift of the shedding frequency toward 
lower values. The notation used for the shifted vortex shedding frequency is fat. The 
amount of the frequency shift depends on the forcing amplitude and frequency, 
which is an effect seen in the global forcing results of Detemple-Laake &, Eckelmann 
(1989) and Barbi et al. (1986). Nonlinear interaction between the forcing signal, f,, 
and the shifted oscillation frequency, f,., generates sum and difference frequencies in 
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FIQURE 11.  Amplitude and phase distributions of the spectral peaks in figure 10(a);  (a) fop = 
0.9 Hz, O / E  = 15.0; ( b )  fe = 0.6 Hz, O / E  = 0.19, (c) f o , - f e  = 0.3 Hz, O / E  = 4.6. -, The non- 
decomposed distribution ; --- the odd component; ----, the even component. 

the spectrum. The spectrum located at  a maximum in the u' r.m.s. distribution is 
presented in figure 10(a) corresponding to forcing at f, = 0.6 Hz, C, = 0.049. The 
dominant spectral peaks are found at f, = 0.6 Hz, fo. = 0.9 Hz, and fo.- f ,  = ve = 
0 .3  Hz. The presence of the difference mode indicates that a beating signal has been 
created between the forced oscillations and the shifted vortex shedding oscillation. 
The results show that even at the lowest forcing amplitude, the disturbances can 
grow to a sufficient amplitude for nonlinear interaction to occur. 

A comparison of the amplitude of the fa. peak in figure 10 (a )  to the fo peak in the 
spectrum of the unforced wake in figure 8(a)  indicates that the energy in fat has 
decreased approximately 5 d B  from the energy info. The symmetric forcing has 
redistributed the energy into the u, peak at the expense of f W .  The spectrum in figure 
10(b )  was computed from the signal on the wake centreline. Peaks are located at 

f ,  = 0.6 Hz, 2fe = 1.2 Hz and 3f, = 1.8 Hz, and all are even functions with O / E  ratios 
of 0.19, 0.16 and 0.23,  respectively. The fo. mode is plotted in figure 11 (a ) ,  where it 
is seen that symmetric forcing has increased the amount of antisymmetry to 
O / E  = 15.0. The amplitude and phase distribution of the f ,  mode in figure l l ( b )  
shows that it is an even mode with O / E  = 0.19. The interaction between f,,. and f, 
creates another sinuous mode at ~, = 0.3 Hz with O / E  = 4.6. The sinuous nature of 
fa .  is evident by the characteristic 180" phase shift and local velocity minimum on the 
wake centreline. The uniform phase distribution across the centreline for thef, mode 
is an indication of the varicose behaviour as seen in figure 11 ( b ) .  
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The symmetry of the combination modes follows two fundamental rules in all of 
the cases examined in this experiment. First, when nonlinear interactions occur 
between an even mode and an odd mode, the combination mode will be an odd 
function of y. Second, if two even modes or two odd modes interact, then the 
resulting combination mode is even. These could have been anticipated given the 
quadratic nonlinearity of the governing equations. Therefore, we expect the 
harmonics resulting from the nonlinear self-interaction of either even or odd modes 
to be even functions of y. The ue mode in figure 11 (c) is an example of odd-ven 
interaction. The amplitude and phase are shown for the odd mode fo.-fe = ue = 
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FIQURE 13. Spectrum at y / D  = 1.0 for forcing at f, = 2.0 Hz, C,, = 0.072. Symmetric forcing at 
this frequency reinforces the natural wake oscillation mode. 

0.3 Hz that results from the interaction of the even forcing mode f, and the odd vortex 
shedding mode fo.. In this case O / E  = 4.6. 

The intermediate level of symmetric forcing amplitude is characterized by the 
dominance of a sinuous mode a t  half the forcing frequency, v,, and the complete 
suppression of the original vortex shedding mode. When 1 < f,/fo < 2, then W- 
shaped mean profiles are formed. The data in figure 12 ( a d )  shows an example of the 
wake response to symmetric forcing at f, = 1.6 Hz, C,, = 0.14. The spectrum in figure 
12 (a)  shows that the vortex shedding at f o r  = 9, = 0.8 Hz is 40 dB stronger than the 
forcing peak. (We use the same notation for to refer to the new shedding frequency, 
even though it is a new peak, not a progressively shifted frequency.) Obviously, there 
is very strong coupling between the symmetric forcing f, and the antisymmetric 
mode +j,. The vortex shedding mode is sinuous (OIE = 7.8) with the 180’ phase shift 
occurring on the wake centreline as shown by the phase plot in figure 12 (b ) .  In figure 
12(c) the harmonic mode fi = f, (same frequency as the forcing frequency) is 
symmetric with OIE = 0.29. Both flow visualization and measurements of the phase 
of the shedding frequency along the axis of the cylinder indicate the vortex shedding 
is parallel to the axis of the cylinder, so the dominant modes are two-dimensional. 

The amplitude and phase distributions are shown in figure 12 ( d )  for a weak mode 
at ve = 2.4 Hz, which results from the interaction of the even forcing field and the 
odd fundamental mode. Following the earlier arguments we expect the 2.4 Hz mode 
to be an odd function of y ,  which is verified by O / E  = 1.6. A fourth peak at  2fe = 
3.2 Hz can also be seen in the spectrum in figure 12 (a) .  This peak results from either 
the self-interaction off, (an even mode) or through the interaction of 9, (odd) with 
9, (odd mode). An even mode is expected in either case, and indeed 2f, is even with 
O / E  = 0.62. 

The spectrum in figure 12 (a)  demonstrates that symmetric forcing suppresses the 
natural oscillations in favour of vortex shedding at 2,. It appears that the symmetric 
forcing channels energy into an antisymmetric mode at half the forcing frequency. 
Since the natural vortex shedding frequency was 1 .O Hz, one would expect forcing a t  
2.0 Hz to reinforce the KarmSn shedding. Indeed this is verified by the spectrum 
shown in figure 13 for excitation at f, = 2.0 Hz, C,, = 0.072, at y/D = 1.0. The 
amplitude of the 1 .O Hz spectral peak increases from - 15 dB in the unforced case to 
-5  dB. In contrast to the natural wake spectrum in figure 8 ( a ) ,  the spectrum in 
figure 13 shows four peaks, at  +j,, f, (very weak), v, and 2f,, which are at  the same 
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FIQURE 14. Spectra for symmetric forcing at f, = 1.0 Hz, C, = 0.14, x / D  = 4.0: (a) spectrum at 
r.m.s. peak, y / D  = 0.94; (b )  y / D  = 0. 

frequency ratios (f/fe) as in the 1.6 Hz forced case. However, the distribution of 
energy among the peaks is different. Although the forcing amplitude is only half the 
value of the previous case, i.e. C, = 0.072 compared to C, = 0.14 for f, = 1.6, the 
amplitude of the fundamental peak is close to the same value of -3  dB. It is not 
surprising that the energy transfer to the fundamental is more efficient when the 
fundamental sinuous mode is close to the natural shedding frequency, since it is the 
preferred mode. 

Next we examined if symmetric forcing at fe = fo = 1.0 Hz would reinforce the 
antisymmetric fo mode, or if the energy would continue to be transferred to the ve 
mode as observed in the previous cases. The spectra a t  y/D = 0.94 and 0 in figure 
14(a, b )  confirm that forcing at C, = 0.14 exhibits the same behaviour as the other 
intermediate forcing cases. A new vortex shedding frequency appears at for = ge = 
0.5 Hz with O / E  = 3.8, instead of reinforcing the antisymmetric fo mode. The 
amplitude and phase for fo. have been plotted in figure 15(a). The original 
antisymmetric vortex shedding mode was replaced by the symmetric mode at f, = 
1.0 Hz, O / E  = 0.32 shown in figure 15(b). These results suggest that the symmetric 
first harmonic of the vortex shedding mode is an important element for controlling 
the energy transfer in the wake. The true test comes from comparison with 
antisymmetric forcing experiments. 
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FIQURE 16. Spectra in the over-forced flow state, f, = 1.6 Hz, C, = 0.34: (a) y/D = 1.6; ( b )  y/D = 
0. (c) Amplitude and phase for f, = 1.6 Hz, OIE = 0.59: -, the non-decomposed distribution; 
__- , the odd component ; ----, the even component. 

The over-forced regime is entered when the forcing amplitude exceeds the 
threshold level, C,* shown in figure 7. It is apparent from the flow visualization in 
figure 4 ( d )  that the large-scale KarmBn vortices no longer form in the near-wake 
region, although a weak sinuous motion of the wake appears farther downstream. 
Figure 16 (a, b) shows the spectra obtained at  y-locations corresponding to the peak 
in the r.m.s. distribution at  y/D = 1.6 and on the centreline of the wake for 
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FIGURE 17. Dominant wake response frequency dependence on the forcing frequency with 
symmetric excitation : , low amplitude ; A, medium amplitude ; 0, high amplitude ; -, the 
results of Barbi et al. (1986); ---, fw/fo =fe/fo andfo,/fo = fe/2f,, lines. 

symmetric forcing a t  f ,  = 1.6 Hz and C, = 0.34. The forcing frequency appears as the 
strongest peak in figure 16(a). From figure 16(c) one sees that the excitation mode, 
f , ,  remains an even function with O / E  = 0.6. 

The important observation is that  increasing the forcing amplitude from Cb = 0.14 
in figure 12 to c b  = 0.34 in figure 16 causes the peak in the fundamental to drop from 
0 to -30 dB. Clearly the mechanism for self-excitation has been disrupted. 
Furthermore, the decrease in the energy of oscillation is evidence that the energy in 
the vortex shedding mode does not come solely from the forcing field. Without the 
resonance mechanism the fluctuation energy levels are much lower, even though the 
forcing amplitudes are higher. We believe that the two shear layers in the over-forced 
case are developing independently, i.e. the cross-flow interaction has apparently 
ceased. Analogous to the splitter plate experiments, the large-scale KBrman vortices 
do not form. 

The frequency response of the wake to the symmetric excitation is summarized in 
figure 17. The dominant frequency appearing in the wake has been plotted against 
the forcing frequency, where both have been normalized by the natural shedding 
frequency, f,. The progressive shift of f,. to frequencies slightly lower than the 
naturalf, occurs at low-amplitude forcing levels and frequencies f,/f, between 0 and 
1.5. Medium-amplitude forcing causes the data to  fall on the 2, line when the forcing 
fe/fo is greater than 1.0. Forcing levels above C,* place the dominant frequencies on 
the f e / f o  line. 

There is striking similarity between the low-Reynolds-number results in figure 17 
and the results of an experiment by Barbi et al. (1986) a t  high Reynolds number, 
superposed as the solid line. I n  Barbi’s experiment, which was conducted at 
Reynolds number 40000, the flow was forced by oscillating the free-stream velocity. 
The purpose of their experiment was to  compare these results to the oscillating 
cylinder experiments. I n  both types of excitation the boundary layers on the body 
of the cylinder are modulated in phase, analogous to the local symmetric forcing used 
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FIGURE 18. Flow visualization for antisymmetric forcingfe/fo = 2.0: (a) C,, = 0.004; 
( b )  C, = 0.019; (c) C,, = 0.073. 

in the present experiment. The close agreement between Barbi's results and the 
results of this experiment provides strong evidence that global types of forcing 
change the wake structure by modulating the boundary layer. Modulation of the 
boundary layer modifies the vorticity production on the surface, hence the 
distribution of vorticity and the vortex development are also affected. This implies 
that the significant region of interaction occurs on the surface of the cylinder when 
global types of forcing are used to modify the wake structure. 

3.3. Antisymmetric forcing 
It is necessary to excite the boundary layers with antisymmetric disturbances to 
confirm that the results described in the previous sections are truly dependent on the 
symmetry of the forcing field. The antisymmetric excitation was produced by forcing 
the two rows of holes 180" out of phase. Flow visualization photographs are shown 
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FIUURE 21. Amplitude and phrtse distributions for antisymmetric forcing: (a) fo. = 0.92 Hz, 
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in figure 18(a-c) corresponding to f, = 2.0 Hz and c b  = 0.004, 0.019 and 0.073, 
respectively. It is evident that the wake does not respond to the antisymmetric 
forcing with the rich variation in structure found with symmetric forcing. Even at  
the largest forcing amplitudes, the wake does not appear to form the sea-horse 
pattern of vortices. In  all cases the dominant mode appears to be sinuous. 

Mean and r.m.s. velocity profiles at x / D  = 4.0 for antisymmetric forcing are shown 
in figure 19 (a-c), corresponding to the same conditions as the flow visualization. The 
mean profile is V-shaped in all cases, with a centreline defect that increases with 
increasing forcing amplitude. As predicted from the flow visualization, no W-shaped 
velocity profile region was found. No threshold behaviour was observed, although 
the velocity defect became quite large. These results confirm that the wake structure 
is sensitive to the symmetry of the forcing field. 

Spectra show that the majority of the forcing energy remains in the vortex 
shedding mode fo. at low and intermediate forcing amplitudes. Combination modes 
are formed by interaction between the vortex shedding and forcing frequencies. At  
high forcing amplitudes, the vortex shedding locks-on to the forcing frequency. 

An example of the unsteady flow behaviour under antisymmetric forcing 
conditions is shown by the spectra at  y / D  = 0.63 and 0 in figure 20 (a,  b )  respectively, 
for forcing at 0.61 Hz and C, = 0.056. Note that to obtain a similar effect in the 
symmetric forcing case of $3.2, C, was 0.049. One finds three significant peaks in the 

4 FLM 234 
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FIQURE 22. Dominant wake response frequency dependence on the forcing frequency with 
antisymmetric excitation : 0, low amplitude ; A, medium amplitude ; 0, high amplitude ; -, 

Forcing frequency, f,/f, 

f0,lfO = felfo. 

spectrum at y/D = 0.63: a t  f o r  = 0.92 Hz, f, = 0.61 Hz and fo- f, = 0.29 Hz. The 
amplitude and phase distributions for the three modes are shown in figure 21 (a-c) for 
the fo./fe and fot-fe modes, respectively. As predicted by the ‘symmetry rules’ the 
difference mode is now an even function (OIE = 0.33), because the interacting modes 
are both odd functions, i.e. OIE = 4.6 for the fo. mode and OIE = 7.0 for the f, mode. 
This result supports the earlier hypothesis that  the symmetry of the forcing field is 
a controlling element in the vortex formation process. Clearly, there must be a 
fundamental difference in the wake structure between symmetric and antisymmetric 
forcing, because the symmetry of the combination modes depends on the symmetry 
of the forcing mode. 

The dependence of the dominant frequency on the antisymmetric forcing 
frequency is summarized in figure 22. At low forcing levels the dominant mode is 
close to the natural shedding frequency and independent off,. As the forcing level 
is increased there is a progressive shift of the shedding frequency by a few percent to  
lower values. Beating occurs at the difference frequency between the forcing field and 
the natural wake oscillation frequency in the low- (C, = 0.017) and intermediate- 
(C, = 0.052) amplitude range. At high forcing amplitudes, C, > 0.08, the forcing 
frequency becomes dominant when fJf0 < 1.0. However, in contrast to the 
symmetric forcing cases, the natural wake oscillation was never completely 
suppressed. 

4. Discussion 
I n  any experiment at supercritical Reynolds numbers the wake is in a self-excited 

state. A type-I or type-I1 global instability provides feedback from the unsteady 
vortices in the wake to the body, which establishes the initial disturbance field. When 
local forcing is applied different regimes of behaviour occur, depending on the 
symmetry and relative amplitude between the forcing field and the initial disturbance 
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field. For both symmetric and antisymmetric forcing at  low levels, the dominant 
frequency is determined by the natural wake oscillation mechanism. Even when the 
forcing field is at very low levels, the disturbances can amplify to a strength that 
allows nonlinear interaction to occur with the original wake oscillation. This 
produces a beating signal at the absolute value of the difference frequency Ifo. - f,l, 
which can be quite strong. The symmetry of the difference mode is determined by the 
symmetry of the forcing field. By the symmetry rule the antisymmetric forcing 
produces a symmetric difference mode, while an antisymmetric difference mode is 
formed by a symmetric forcing field. Therefore, the wake structure depends on the 
symmetry of the forcing field. 

The near-wake oscillation mechanism has been found to be surprisingly sensitive 
to symmetric disturbances over a range of forcing frequencies. Morkovin (1987) has 
speculated that the wake would be receptive to symmetric oscillations at twice the 
Ktirmtin shedding frequency. Clearly this is true, but it goes beyond the sensitivity 
at  just one frequency. The results have shown that the shedding frequency can be 
controlled by the symmetric disturbance frequency. Raising the forcing amplitude to 
intermediate levels creates a different spectrum with symmetric forcing than with 
antisymmetric forcing. In the symmetric case the forcing frequency determines the 
wake oscillation frequency, which appears at the subharmonic of the forcing 
frequency, Qe. The natural wake oscillations are completely suppressed at 
intermediate forcing levels. 

The forcing field dominates the wake spectrum when high-amplitude forcing levels 
are used. For symmetric forcing above C,*, the results have shown that the 
antisymmetric mode which generates the large-scale Kirman vortex street is 
disrupted, and the staggered vortex pattern breaks down into a parallel arrangement 
of vortices. the near wake no longer supports the growth of the antisymmetric 
component. The energy of the symmetric oscillations atf, is much weaker in the over- 
forced state, and flow visualization shows that the vortices are much smaller in size. 
At high amplitudes, antisymmetric forcing causes the wake oscillations to lock-on to 
the forcing frequency. The sudden change to a U-shaped mean velocity profile was 
not observed when antisymmetric forcing was applied. 

There are two likely explanations for the loss of the resonance in the overforced- 
flow. First, since the forcing amplitudes are large enough in this experiment for 
nonlinear effects to occur on the surface of the cylinder, the base flow may have been 
altered (by second-order effects) to a state that will not amplify the antisymmetric 
disturbance mode. If the base flow becomes stable to the antisymmetric mode, then 
only the symmetric mode from the forcing signal will appear in the wake. 

Another possible explanation for the behaviour in the over-forced state can be 
found in concepts of linear theory, keeping in mind the caveat that this flow is 
strongly nonlinear. Monkewitz & Nguyen (1987) studied the instability charac- 
teristics of a family of mean wake profiles, and discovered that the varicose mode 
of instability is not absolutely unstable for typical wake velocity profiles. Without 
the absolute instability, a global instability would not be supported in the near wake. 
As the symmetric forcing level is increased, the sinuous feedback signal from the 
wake will eventually be dominated by the varicose forcing signal. The separating 
shear layers will be dominated by the varicose mode, but without the absolute 
instability in the near wake, the global instability will not occur and the large-scale 
Karmtin vortices will not form. Only the disturbances introduced at the surface of 
the cylinder will be present to convect downstream, which causes the dominant 
frequency in the wake to appear at  the forcing frequency. 

4-2 
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It is our opinion that the latter mechanism is the more likely explanation for the 
breakdown of the resonance, primarily because the mean velocity profiles in the 
antisymmetric forcing experiments do not show the threshold type of behaviour 
found with symmetric forcing experiments do not show the threshold type of 
behaviour found with symmetric forcing. If we assume that the base flow states are 
independent of the symmetry of the forcing field, then the threshold behaviour seen 
in the symmetric forcing case must be a result of the unsteady flow effects. however, 
to conclusively prove that this is the case, a more definitive experiment must be 
carried out, perhaps using numerical simulation. 

5. Conclusion 
For the first time in a globally unstable flow it has been shown that the vortex 

shedding frequency and structure can be changed by introducing local disturbances 
into the boundary layer on the cylinder. Three general regimes of behaviour were 
found to  depend on the frequency, amplitude and symmetry of the forcing field. 
At low forcing amplitudes one observes the nonlinear interaction between the modes 
corresponding to  the original wake oscillator and the forced oscillation mode. This 
leads to  combination modes representing a beating between the oscillators. When the 
symmetric forcing amplitude is increased from low to intermediate forcing levels, the 
original wake oscillation mode is suppressed in favour of a new vortex shedding mode 
a t  half the forcing frequency. Over the frequency range 1 <f,.fo < 2, a W-shaped 
mean velocity profile is observed, and the wake appears to spread faster. 

An upper limit to the amount of symmetric forcing that can produce an  
antisymmetric vortex shedding mode has been found. The limit is a frequency- 
dependent threshold, above which the antisymmetric mode is no longer amplified by 
the wake. Once this threshold is exceeded the mechanism for large-scale vortex 
formation ceases, and parallel vortex shedding begins. 

Localized forcing with antisymmetric disturbances produces a different wake 
response than symmetric forcing, which proves the importance of the symmetry of 
the forcing field. Typical spectra consist of three frequencies, fo., f, and a beating 
signal at the absolute value of the difference frequency, Ifo-fel .  When the forcing 
amplitude is at the highest levels, the vortex shedding occurs a t  the forcing 
frequency. 

The cross-flow symmetry of the combination modes resulting from nonlinear 
interaction could be predicted by two simple rules of symmetry. An odd mode 
interacting with an even mode always produces an odd mode. Interaction between 
two odd or two even modes produces an even mode. Such simple rules are helpful in 
identifying mode interactions and in determining the wake structure. 

Many of the features observed in experiments with global forcing, such as the sea- 
horse pattern of vortices and vortex shedding a t  half the forcing frequency have been 
reproduced with the local forcing in the boundary layer. This suggests that  the 
important interaction between the forcing field and the vortex formation mechanism 
actually occurs on the surface of the cylinder. 
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